ajdmom.mdl_svcj.cond_ieii_ieziziz_mom
Joint Conditional Moment of \(I\!E_t,I_t,I_t^{*},I\!E\!Z_t,I\!Z_t,I\!Z_t^{*}|v_0\)
In this module, we focus on computing the following conditional joint moment:
\[\begin{equation}\label{eqn:joint-ieii-ieziziz}
\mathbb{E}[I\!E_t^{m_1}I_t^{m_2}I_t^{*m_3}I\!E\!Z_t^{m_4}I\!Z_t^{m_5}I\!Z_t^{*m_6}|v_0].
\end{equation}\]
While the recursive computation of \(\mathbb{E}[I\!E_t^{m_1} I_t^{m_2} I_t^{*m_3}|v_0]\) is
well-established for models such as the Heston model, we encounter a new challenge:
the last three quantities \(I\!E\!Z_t^{m_4} I\!Z_t^{m_5} I\!Z_t^{*m_6}\) are not independent
of the first three quantities \(I\!E_t^{m_1} I_t^{m_2} I_t^{*m_3}\) in above equation.
For \(m_4 + m_5 + m_6 \ge 1\), we must evaluate integrals of the form
\[\begin{equation}
\int_0^t e^{lks} \mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3} I\!E\!Z_t^{m_4} I\!Z_t^{m_5} I\!Z_t^{*m_6}|v_0]\mathrm{d} s.
\end{equation}\]
The dependence between \(I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3}\) and
\(I\!E\!Z_t^{m_4} I\!Z_t^{m_5} I\!Z_t^{*m_6}\) motivates us to decompose the latter
as follows:
\[\begin{split}\begin{align*}
&I\!E\!Z_t^{m_4}I\!Z_t^{m_5}I\!Z_t^{*m_6}\\
&= \sum_{i_1=0}^{m_4}\sum_{i_2=0}^{m_5}\sum_{i_3=0}^{m_6} \binom{m_4}{i_1}\binom{m_5}{i_2}
\binom{m_6}{i_3} I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3} I\!E\!Z_{s,t}^{m_4-i_1}
I\!Z_{s,t}^{m_5-i_2} I\!Z_{s,t}^{*m_6-i_3}, \quad \forall s \le t,
\end{align*}\end{split}\]
where \(I\!E\!Z_t\) is split into two independent parts \(I\!E\!Z_s, I\!E\!Z_{s,t}\), i.e.,
\(I\!E\!Z_t = I\!E\!Z_s + I\!E\!Z_{s,t}\). Similarly, \(I\!Z_t\) and \(I\!Z_t^*\)
are decomposed as \(I\!Z_t = I\!Z_s + I\!Z_{s,t}\) and \(I\!Z_t^* = I\!Z_s^* + I\!Z_{s,t}^*\),
respectively. Here, the new terms \(I\!E\!Z_{s,t}\), \(I\!Z_{s,t}\) and \(I\!Z_{s,t}^{*}\)
are defined as
\[\begin{equation*}
I\!E\!Z_{s,t} \mathrel{:=} \int_s^te^{ku}\mathrm{d} z^v(u),
\quad I\!Z_{s,t} \mathrel{:=} \int_s^t\mathrm{d} z^v(u),
\quad I\!Z^{*}_{s,t} \mathrel{:=} \int_s^t\mathrm{d} z^{s}(u).
\end{equation*}\]
Consequently, we have
\[\begin{split}\begin{align*}
&\int_0^t e^{lks} \mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3} I\!E\!Z_t^{m_4} I\!Z_t^{m_5} I\!Z_t^{*m_6}|v_0]\mathrm{d} s\\
&= \sum_{i_1=0}^{m_4}\sum_{i_2=0}^{m_5}\sum_{i_3=0}^{m_6}\binom{m_4}{i_1}\binom{m_5}{i_2}\binom{m_6}{i_3} \int_0^t e^{lks} \mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3} I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0] \cdot M(i_1,i_2,i_3)\mathrm{d} s.
\end{align*}\end{split}\]
where
\(M(i_1,i_2,i_3)\mathrel{:=} \mathbb{E}[I\!E\!Z_{s,t}^{m_4-i_1} I\!Z_{s,t}^{m_5-i_2} I\!Z_{s,t}^{*m_6-i_3}|v_0]\).
We have established that the conditional joint moment
\(\mathbb{E}[I\!E\!Z_{s,t}^{m_4}I\!Z_{s,t}^{m_5}I\!Z_{s,t}^{*m_6}|v_0]\) can be computed as
the following “polynomial”:
\[\begin{equation}
\mathbb{E}[I\!E\!Z_{s,t}^{m_4}I\!Z_{s,t}^{m_5}I\!Z_{s,t}^{*m_6}|v_0]
= \sum_{\boldsymbol{j}}c_{\boldsymbol{j}}e^{j_1kt}t^{j_2}e^{j_3js}s^{j_4}k^{-j_5}\lambda^{j_6}\mu_v^{j_7}\mu_s^{j_8}\sigma_s^{j_9},
\end{equation}\]
where \(\boldsymbol{j}\mathrel{:=} (j_1,\dots, j_9), j_1,\dots,j_9\) are integers,
\(c_{\boldsymbol{j}}\) represents the corresponding monomial coefficient. For detailed derivations,
please refer to ajdmom.mdl_svcj.ieziziz_mom.
With above equation, the conditional joint moment can be computed recursively as follows:
\[\begin{split}\begin{align}
&\mathbb{E}[I\!E_t^{m_1} I_t^{m_2} I_t^{*m_3} I\!E\!Z_t^{m_4} I\!Z_t^{m_5} I\!Z_t^{*m_6}|v_0]\nonumber\\
&=\sum_{i_1=0}^{m_4}\sum_{i_2=0}^{m_5}\sum_{i_3=0}^{m_6}\binom{m_4}{i_1}\binom{m_5}{i_2}\binom{m_6}{i_3}
\sum_{\boldsymbol{j}}c_{\boldsymbol{j}}e^{j_1kt}t^{j_2}k^{-j_5}\lambda^{j_6}\mu_v^{j_7}\mu_s^{j_8}
\sigma_s^{j_9}F(m_1, m_2, m_3),%\label{eqn:recursive-ieii-ieziziz}
\end{align}\end{split}\]
where
\[\begin{align*}
F(m_1,m_2,m_3)
&\mathrel{:=} \sum_{i=1}^4\left[\frac{m_1(m_1-1)}{2}f_{6i}
+ \frac{m_2(m_2-1)}{2}g_{6i}
+ m_1m_2h_{6i}
+ \frac{m_3(m_3-1)}{2}q_{6i}\right],
\end{align*}\]
and the terms \(f_{6i}, g_{6i}, h_{6i}, q_{6i}, i=1,2,3,4\) are defined as:
\[\begin{split}\begin{align*}
f_{61} &\mathrel{:=} \int_0^te^{(j_3+1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-2}I_s^{m_2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times (v_0-\theta),\\
f_{62} &\mathrel{:=} \int_0^te^{(j_3+2)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-2}I_s^{m_2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \theta,\\
f_{63} &\mathrel{:=} \int_0^te^{(j_3+1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-1}I_s^{m_2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \sigma_v,\\
f_{64} &\mathrel{:=} \int_0^te^{(j_3+1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-2}I_s^{m_2}I_s^{*m_3}I\!E\!Z_s^{i_1+1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s,
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
g_{61} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2-2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times (v_0-\theta),\\
g_{62} &\mathrel{:=} \int_0^te^{(j_3-0)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2-2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \theta,\\
g_{63} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1+1}I_s^{m_2-2}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \sigma_v,\\
g_{64} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2-2}I_s^{*m_3}I\!E\!Z_s^{i_1+1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s,
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
h_{61} &\mathrel{:=} \int_0^te^{(j_3+0)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-1}I_s^{m_2-1}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times (v_0-\theta),\\
h_{62} &\mathrel{:=} \int_0^te^{(j_3+1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-1}I_s^{m_2-1}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \theta,\\
h_{63} &\mathrel{:=} \int_0^te^{(j_3+0)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-0}I_s^{m_2-1}I_s^{*m_3}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \sigma_v,\\
h_{64} &\mathrel{:=} \int_0^te^{(j_3+0)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1-1}I_s^{m_2-1}I_s^{*m_3}I\!E\!Z_s^{i_1+1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s,
\end{align*}\end{split}\]
and
\[\begin{split}\begin{align*}
q_{61} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3-2}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times (v_0-\theta),\\
q_{62} &\mathrel{:=} \int_0^te^{(j_3-0)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3-2}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \theta,\\
q_{63} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1+1}I_s^{m_2}I_s^{*m_3-2}I\!E\!Z_s^{i_1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s \times \sigma_v,\\
q_{64} &\mathrel{:=} \int_0^te^{(j_3-1)ks}s^{j_4}\mathbb{E}[I\!E_s^{m_1}I_s^{m_2}I_s^{*m_3-2}I\!E\!Z_s^{i_1+1}I\!Z_s^{i_2}I\!Z_s^{*i_3}|v_0]\mathrm{d} s.
\end{align*}\end{split}\]
Before closing this subsection, we highlight that the final expression for the conditional joint moment
takes the form of a polynomial in \(v_0-\theta\). Specifically, it can be expressed as:
\[\begin{equation}%\label{eqn:ieii-ieziziz-polynomial}
\mathbb{E}[I\!E_t^{m_1}I_t^{m_2}I_t^{*m_3}I\!E\!Z_t^{m_4}I\!Z_t^{m_5}I\!Z_t^{*m_6}|v_0]
= \sum_{i=0}^{\lfloor (m_1+m_2)/2 \rfloor + \lfloor m_3/2 \rfloor} c_i (v_0-\theta)^i,
\end{equation}\]
where \(\lfloor x \rfloor\) denotes the floor function, i.e., the greatest integer less than
or equal to \(x\). Here, with a slight abuse of notation, \(c_i\) represents the coefficient,
which can be computed via the recursive equation.
Functions
expand_ieziziz(poly)
|
|
ieziziz_to_ieii_ieziziz(poly)
|
|
int_e_s_poly(c, tp, m1, m2, poly)
|
|
key_times_poly(k, poly)
|
|
m_ieii_ieziziz(order, par)
|
|
moment_ieii_ieziziz(n1, n2, n3, n4, n5, n6)
|
joint conditional moment of \(IE_t,I_t,I_t^{*},IEZ_t,IZ_t,IZ_t^{*}|v_0\) |
poly2num(poly, par)
|
|
recursive_ieii_ieziziz(n1, n2, n3, n4, n5, ...)
|
|