ajdmom.mdl_svcj.cond2_mom

Conditional Moments for the SVCJ model, given \(v_0\) and the realized jumps in the variance.

Functions

comb_poly(index)

multiply together those conditional normal distribution moments

m(l, par)

conditional moment in scalar

mnorm_cond(n)

conditional normal distribution moment \(J_i^s|J_i^v \sim \mathcal{N} (\mu_s+rhoJ J_i^v, \sigma_s^2)\)

moment_IZs(m, J)

moment \(\mathbb{E}[(IZ_t^{s})^{m}|z^v(u), 0\le u \le t]\)

moment_y(l, J)

moments_y_to(l, J)

conditional moments of \(y_t\) of orders \(0:l\)

poly2num(poly, par)

Decode poly back to scalar