===================================================================== :abbr:`SVVJ(Stochastic Volatility with Jumps in the Variance)` Model ===================================================================== In this subpackage (``ajdmom.mdl_svvj``), we consider the following :abbr:`SV(Stochastic Volatility)` model, which adds a jump component in the variance of the Heston model: .. math:: d\log s(t) &= (\mu- v(t)/2) dt + \sqrt{v(t)}dw^s(t),\\ dv(t) &= k(\theta - v(t))dt + \sigma_v \sqrt{v(t)}dw^v(t) + dz(t), where :math:`z(t)` is a :abbr:`CPP(Compound Poisson Process)` with constant arrival rate :math:`\lambda` and jumps distributed according to distribution :math:`F_j(\cdot,\boldsymbol{\theta}_j)` with parameter :math:`\boldsymbol{\theta}_j`. Usually, the jump distribution is set as an exponential distribution with scale parameter :math:`\mu_v` (= 1/rate), which will help to assure the variance always be non-negative, i.e., :math:`v(t) \ge 0, \forall t\ge 0`. Define :math:`y_t \equiv \log s(t) - \log s(0)`. Then, we have .. math:: :label: y_svvj_t \begin{align*} y_t &= (\mu-\theta/2)t - (v_0 - \theta)\beta_t + \frac{1}{2k}e^{-kt}I\!E\!Z_t - \frac{1}{2k}I\!Z_t\\ &\quad + \frac{\sigma_v}{2k} e^{-kt}I\!E_t + \left(\rho -\frac{\sigma_v}{2k} \right)I_t + \sqrt{1-\rho^2}I_t^{*}, \end{align*} where :math:`\beta_t \equiv (1-e^{-kt})/(2k)`. Please refer to :doc:`../generated/ajdmom.ito_cond2_mom` for the definitions of :math:`I\!E\!Z_t` and :math:`I\!Z_t`. Please also note that :math:`I\!E_t\equiv I\!E_{0,t}, I_t\equiv I_{0,t}, I_t^{*} \equiv I_{0,t}^{*}`, and refer to :doc:`theory` for the definitions of :math:`I\!E_{s,t}, I_{s,t}, I_{s,t}^{*}`. Conditional Moments - I ========================== Given the initial variance :math:`v_0`, the conditional mean of :math:`y_t` is given as .. math:: \begin{align*} \mathbb{E}[y_t|v_0] &= (\mu-\theta/2)t - (v_0 - \theta)\beta_t + \frac{1}{2k}e^{-kt} \mathbb{E}[I\!E\!Z_t] - \frac{1}{2k}\mathbb{E}[I\!Z_t]\\ &= (\mu-\theta/2)t - (v_0 - \theta)\beta_t + \frac{\lambda \mu_v}{k}\beta_t - \frac{1}{2k}\lambda t \mu_v. \end{align*} Let us define :math:`\overline{y}_t \triangleq y_t - \mathbb{E}[y_t|v_0]`, then we have .. math:: \begin{align*} \overline{y}_t &= \frac{\sigma_v}{2k} e^{-kt}I\!E_t + \left(\rho -\frac{\sigma_v}{2k} \right)I_t + \sqrt{1-\rho^2}I_t^{*} + \frac{1}{2k}e^{-kt}I\!E\!Z_t - \frac{1}{2k}I\!Z_t\\ &\quad - \frac{\lambda \mu_v}{2k^2}(1-e^{-kt}) + \frac{1}{2k}\lambda t\mu_v. \end{align*} Central Moments -------------------- Then, the :math:`l`-th conditional central moment can be computed via .. math:: \mathbb{E}[\overline{y}_t^l|v_0] = \sum_{\mathbf{n}}c(\mathbf{n}) b(\mathbf{n})\mathbb{E}[(e^{-kt}I\!E_t)^{n_1}I_t^{n_2}I_t^{*n_3} (e^{-kt}I\!E\!Z_t)^{n_4} I\!Z_t^{n_5}|v_0], where :math:`\mathbf{n} = (n_1,n_2,n_3,n_4,n_5,n_6,n_7)`, :math:`n_1+\cdots+n_7=l`, .. math:: \begin{eqnarray*} c(\mathbf{n}) &=& \binom{l}{n_1,\cdots, n_7},\\ b(\mathbf{n}) &=& \left(\frac{\sigma_v}{2k}\right)^{n_1} \left(\rho -\frac{\sigma_v}{2k} \right)^{n_2} \left(\sqrt{1-\rho^2}\right)^{n_3} \frac{(-1)^{n_5+n_6}}{(2k)^{n_4+n_5+n_7}} \left[\frac{\lambda \mu_v}{2k^2}(1-e^{-kt})\right]^{n_6} (\lambda t\mu_v)^{n_7}. \end{eqnarray*} Moments ------------------- Given conditional central moments, it is easy to compute conditional moments as the following .. math:: \mathbb{E}[y_t^l|v_0] = \sum_{i=0}^l\binom{n}{i} \mathbb{E}^i[y_t|v_0] \mathbb{E}[\overline{y}_t^{l-i}|v_0]. Unconditional Moments ========================== By substituting the terms :math:`\mathbb{E}[(v_0 - \theta)^l]` within the conditional central moments and conditional moments, we get the unconditional central moments and unconditional moments. Please refer to the :abbr:`SRJD(Square-Root Jump Diffusion)` model page for the computation of the terms :math:`\mathbb{E}[(v_0 - \theta)^l]`. However, it is a little complicated to derive the unconditional covariances. It is necessary to introduce more notations as :math:`y_{n+1} \equiv y((n+1)h) - y(nh)`, .. math:: \begin{align*} y_{n+1} &= - (v_n-\theta)\beta + \frac{\sigma_v}{2k} e^{-k(n+1)h}I\!E_{n+1} + \left(\rho -\frac{\sigma_v}{2k} \right)I_{n+1} + \sqrt{1-\rho^2}I_{n+1}^{*}\\ &\quad ~ + \frac{1}{2k}e^{-k(n+1)h}I\!E\!Z_{n+1} - \frac{1}{2k}I\!Z_{n+1} + (\mu - \theta/2) h , \end{align*} where :math:`\beta \equiv (1-e^{-kh})/(2k)`, and :math:`v_n - \theta = e^{-kh}(v_{n-1} - \theta) + \sigma_ve^{-knh}I\!E_n + e^{-knh}I\!E\!Z_n`. When expanding :math:`y_{n+1}^{l_2}`, the indexing (:math:`n_0+\cdots+n_6=l_2`) is organized as +---------------------+-------------------+----------------+--------------------+----------------------+-------------------+---------------------------+ |:math:`(v_n-\theta)` |:math:`I\!E_{n+1}` |:math:`I_{n+1}` |:math:`I_{n+1}^{*}` |:math:`I\!E\!Z_{n+1}` |:math:`I\!Z_{n+1}` |:math:`(\mu - \theta/2) h` | +=====================+===================+================+====================+======================+===================+===========================+ |:math:`n_0` |:math:`n_1` |:math:`n_2` |:math:`n_3` |:math:`n_4` |:math:`n_5` |:math:`n_6` | +---------------------+-------------------+----------------+--------------------+----------------------+-------------------+---------------------------+ Covariances --------------------- Covariances can be computed via .. math:: cov(y_n^{l_1}, y_{n+1}^{l_2}) = \mathbb{E}[y_n^{l_1}y_{n+1}^{l_2}] - \mathbb{E}[y_{n}^{l_1}]\mathbb{E}[y_{n+1}^{l_2}]. Therefore, we only need to compute :math:`\mathbb{E}[y_n^{l_1}y_{n+1}^{l_2}]`. .. math:: \begin{align*} &\mathbb{E}[y_n^{l_1}y_{n+1}^{l_2}]\\ &=\sum_{\mathbf{n}} c(\mathbf{n}) b(\mathbf{n}) \sum_{\mathbf{m}} c(\mathbf{m}) b(\mathbf{m})\\ &\quad\mathbb{E}[(v_{n-1} - \theta)^{m_0}(e^{-knh}I\!E_n)^{m_1}I_n^{m_2}I_n^{*m_3} (e^{-knh}I\!E\!Z_n)^{m_4} I\!Z_n^{m_5} \cdot \\ &\qquad (v_n - \theta)^{n_0}(e^{-k(n+1)h}I\!E_{n+1})^{n_1}I_{n+1}^{n_2}I_{n+1}^{*n_3} (e^{-k(n+1)h}I\!E\!Z_{n+1})^{n_4} I\!Z_{n+1}^{n_5}]. \end{align*} Note that .. math:: \begin{align*} &\mathbb{E}[I\!E_{n+1}^{n_1} I_{n+1}^{n_2} I_{n+1}^{*n_3} I\!E\!Z_{n+1}^{n_4} I\!Z_{n+1}^{n_5}]\\ &= \sum_{n_1,n_4,i,j,l,o,p,q,r,s}b_{n_1,n_4,i,j,l,o,p,q,r,s} e^{(n_1+n_4)knh} e^{ikh} h^j k^{-l} (v_n-\theta)^o \theta^p \sigma_v^q \lambda^r \mu_v^s,\\ &(v_n-\theta)^{n_0} e^{-(n_1+n_4)k(n+1)h} \mathbb{E}[I\!E_{n+1}^{n_1} I_{n+1}^{n_2} I_{n+1}^{*n_3} I\!E\!Z_{n+1}^{n_4} I\!Z_{n+1}^{n_5}]\\ &= \sum_{n_1,n_4,i,j,l,o,p,q,r,s}b_{n_1,n_4,i,j,l,o,p,q,r,s} e^{-(n_1+n_4)kh} e^{ikh} h^j k^{-l} (v_n-\theta)^{o+n_0} \theta^p \sigma_v^q \lambda^r \mu_v^s. \end{align*} A function is defined to implement the corresponding derivation and the expansion of :math:`(v_n-\theta)`, resulting in .. math:: \begin{align*} &ve\_I\!EII\_I\!E\!ZI\!Z\_vn(n_0,n_1,n_2,n_3,n_4,n_5)\\ &= \sum_{m_1,m_2,i,j,l,o,p,q,r,s} b_{m_1,m_2,i,j,l,o,p,q,r,s} e^{-(m_1+m_2)knh} I\!E_n^{m_1} I\!E\!Z_n^{m_2} e^{-ikh} h^j k^{-l} (v_n-\theta)^{o} \theta^p \sigma_v^q \lambda^r \mu_v^s. \end{align*} The expansion of :math:`(v_n-\theta)` is done via, .. math:: (v_n-\theta)^m = \sum_{\mathbf{m}} \binom{m}{m_1,m_2,m_3} [e^{-kh}(v_{n-1} - \theta)]^{m_1} (\sigma_ve^{-knh}I\!E_n)^{m_2} (e^{-knh}I\!E\!Z_n)^{m_3}. Conditional Moments - II ========================== Given the initial variance :math:`v_0` and the :abbr:`CPP(Compound Poisson Process)` over interval :math:`[0,t]`, :math:`z_s, 0\le s \le t`, the conditional mean of return over this interval is given by .. math:: \begin{align*} &\mathbb{E}[y_t|v_0,z_s, 0\le s\le t] \\ &= (\mu-\theta/2)t - (v_0 - \theta)\beta_t + \frac{1}{2k} e^{-kt}I\!E\!Z_t - \frac{1}{2k}I\!Z_t. \end{align*} Let us define :math:`\overline{y}_t \triangleq y_t - \mathbb{E}[y_t|v_0,z_s, 0\le s\le t]`, then we have .. math:: \overline{y}_t = \frac{\sigma_v}{2k} e^{-kt}I\!E_t + \left( \rho -\frac{\sigma_v}{2k} \right)I_t + \sqrt{1-\rho^2}I_t^{*}. Conditional Central Moments ---------------------------- For conditional central moments, we have .. math:: :label: cmoment-y_svvj \begin{align*} &\mathbb{E}[{\overline{y}_t}^l|v_0,z_s, 0\le s\le t]\\ &= \sum_{\boldsymbol{n}} c(\boldsymbol{n}) b(\boldsymbol{n}) \mathbb{E}[(e^{-kt}I\!E_t)^{n_1} I_t^{n_2} I_t^{*n_3} |v_0,z_s, 0\le s\le t], \end{align*} where :math:`\boldsymbol{n} = (n_1, n_2, n_3)`, :math:`n_1+n_2+n_3=l`, :math:`c(\boldsymbol{n}) = C_l^{n_1} C_{l-n_1}^{n_2}`, and .. math:: b(\boldsymbol{n}) = \left( \frac{\sigma_v}{2k} \right)^{n_1} \left( \rho -\frac{\sigma_v}{2k} \right)^{n_2} \left( \sqrt{1-\rho^2} \right)^{n_3} The derivation for :math:`\mathbb{E}[E_t^{n_1} I_t^{n_2} I_t^{*n_3}|v_0,z_s, 0\le s\le t]` has been implemented in :py:func:`~ajdmom.ito_cond2_mom.moment_IEII` from module :py:mod:`ajdmom.ito_cond2_mom`. The conditional central moments in :eq:`cmoment-y_svvj` is implemented in :py:func:`~ajdmom.mdl_svvj.cond2_cmom.cmoments_y_to` in the subpackage ``ajdmom.mdl_svvj``, noting that the function now derives simultaneously the conditional central moments with orders from 1 to :math:`l`. Conditional Moments -------------------- Now we rewrite :math:`y_t` as the following .. math:: y_t = (\mu - \theta/2)t - (v_0 - \theta)\beta_t + \frac{1}{2k} e^{-kt}I\!E\!Z_t - \frac{1}{2k}I\!Z_t + \overline{y}_t, to enable us to exploit :py:func:`~ajdmom.mdl_svvj.cond2_cmom.cmoment_y` for the derivation of those involved conditional central moments. With this expression, the conditional moments can be derived through the following equation .. math:: :label: moment-y_svvj \begin{align*} &\mathbb{E}[y_t^l|v_0,z_s, 0\le s\le t] \\ &= \sum_{\boldsymbol{n}} c_2(\boldsymbol{n}) b_2(\boldsymbol{n}) (e^{-kt}I\!E\!Z_t)^{n_3} I\!Z_t^{n_4} \mathbb{E}[\overline{y}_t^{n_5}|v_0, z_s, 0\le s \le t], \end{align*} where :math:`\boldsymbol{n} = (n_1, n_2, n_3, n_4, n_5)`, :math:`\sum_{i=1}^5 n_i = l`, .. math:: \begin{align*} c_2(\boldsymbol{n}) &= C_l^{n_1} C_{l-n_1}^{n_2} C_{l-n_1-n_2}^{n_3} C_{l-n_1-n_2-n_3}^{n_4} C_{l-n_1-n_2-n_3-n_4}^{n_5},\\ b_2(\boldsymbol{n}) &= (-1)^{n_2} (2k)^{-(n_3+n_4)} [(\mu-\theta/2)t]^{n_1} (v_0-\theta)^{n_2}. \end{align*} The conditional moments in :eq:`moment-y_svvj` is implemented in :py:func:`~ajdmom.mdl_svvj.cond2_mom.moments_y_to` in the subpackage ``ajdmom.mdl_svvj``. API ==== .. autosummary:: :toctree: generated ajdmom.mdl_svvj.cmom ajdmom.mdl_svvj.mom ajdmom.mdl_svvj.cov ajdmom.mdl_svvj.cond_cmom ajdmom.mdl_svvj.cond_mom ajdmom.mdl_svvj.cond2_cmom ajdmom.mdl_svvj.cond2_mom