===================================================================== :abbr:`SVIJ(Stochastic Volatility with Independent Jumps)` Model ===================================================================== In this subpackage (``ajdmom.mdl_svij``), we consider the following :abbr:`SV(Stochastic Volatility)` model, which adds independent jump components in the price and variance of the Heston model: .. math:: d\log s(t) &= (\mu- v(t)/2) dt + \sqrt{v(t)}dw^s(t) + dz^s(t),\\ dv(t) &= k(\theta - v(t))dt + \sigma_v \sqrt{v(t)}dw^v(t) + dz^v(t), where - :math:`z^v(t)` is a :abbr:`CPP(Compound Poisson Process)` with constant arrival rate :math:`\lambda_v` and jumps distributed according to an exponential distribution with scale parameter :math:`\mu_v` (= 1/rate), i.e., :math:`J_i^v \sim \text{exp}(\mu_v)` (which will help to make sure the variance always be non-negative, i.e., :math:`v(t) \ge 0, \forall t\ge 0`). - :math:`z^s(t)` is another :abbr:`CPP(Compound Poisson Process)` (independent of :math:`z^v(t)`) with constant arrival rate :math:`\lambda_s` and jumps distributed according to a normal distribution with mean :math:`\mu_s` and variance :math:`\sigma_s^2`, i.e., :math:`J_i^s \sim \mathcal{N}(\mu_s, \sigma_s^2)`. Define :math:`y_t \triangleq \log s(t) - \log s(0)`, and :math:`I\!Z_t^s\triangleq \int_0^t dz^s(u)`. Then, we have .. math:: y_t = y_{svvj,t} + I\!Z_t^s, where :math:`y_{svvj,t}` denotes the yield :math:`y_t` in Equation :eq:`y_svvj_t` from the :abbr:`SVVJ(Stochastic Volatility with Jumps in the Variance process)` model. For models including jumps in the variance, it seems that only conditional moments and conditional central moments (given :math:`v_0, z^v(u), 0\le u \le t`) can be derived in closed-form for any order. Therefore, for those models, the package will focus on the derivation of conditional moments and conditional central moments. Conditional Moments - II ========================= Given the initial variance :math:`v_0` and the :abbr:`CPP(Compound Poisson Process)` in the variance over interval :math:`[0,t]`, :math:`z^v(u), 0\le u \le t`, we are going to derive the conditional moments and conditional central moments of return over this interval :math:`[0,t]`. We define two centralized variables .. math:: \begin{align*} \overline{y}_{svvj,t} &\triangleq y_{svvj,t} - \mathbb{E}[y_{svvj,t}|v_0,z^v_u, 0\le u \le t],\\ \overline{I\!Z^s_t} &\triangleq I\!Z^s_t - \mathbb{E}[I\!Z^s_t], \end{align*} to introduce the (conditionally) centralized return .. math:: \overline{y}_t \triangleq \overline{y}_{svvj, t} + \overline{I\!Z^s_t}. Thus, the conditional moments and central moments can be derived through the following equations, .. math:: \begin{align*} &\mathbb{E}[y_t^m|v_0, z^v_u, 0\le u\le t] \\ &= \sum_{i=0}^{m}C_m^i \mathbb{E}[y_{svvj, t}^i|v_0, z^v_u, 0\le u\le t] \mathbb{E}[(I\!Z^s_t)^{m-i}],\\ &\mathbb{E}[\overline{y}_t^m|v_0, z^v_u, 0\le u\le t] \\ &= \sum_{i=0}^{m}C_m^i \mathbb{E}[\overline{y}_{svvj, t}^i |v_0, z^v_u, 0\le u\le t] \mathbb{E}[(\overline{I\!Z^s_t})^{m-i}]. \end{align*} They are implementd in functions :py:func:`~ajdmom.mdl_svij.cond2_mom.moments_y_to` and :py:func:`~ajdmom.mdl_svij.cond2_cmom.cmoments_y_to` in this subpackage (:py:mod:`ajdmom.mdl_svij`), respectively. API ==== .. autosummary:: :toctree: generated ajdmom.mdl_svij.cond2_cmom ajdmom.mdl_svij.cond2_mom