================================================================= :abbr:`1FSVJ(One-Factor Stochastic Volatility with Jumps)` Model ================================================================= In this subpackage (``ajdmom.mdl_1fsvj``), we consider the following :abbr:`SV(Stochastic Volatility)` model, which adds a jump component in the log price process of the Heston model: .. math:: d\log s(t) &= (\mu- v(t)/2) dt + \sqrt{v(t)}dw^s(t) + dz(t),\\ dv(t) &= k(\theta - v(t))dt + \sigma_v \sqrt{v(t)}dw^v(t), where :math:`z(t)` is a :abbr:`CPP(Compound Poisson Process)` with a constant arrival rate :math:`\lambda` and jump distribution :math:`F_j(\cdot,\boldsymbol{\theta}_j)` with parameter :math:`\boldsymbol{\theta}_j`. We take normal distribution with mean :math:`\mu_j` and variance :math:`\sigma_j^2` as an example of :math:`F_j(\cdot,\boldsymbol{\theta}_j)`. For this model, .. math:: y_n = y_{o,n} + J_n, where .. math:: y_{o,n} &\triangleq \mu h - \frac{1}{2}IV_{n} + \rho I_n + \sqrt{1-\rho^2}I_n^{*}, \\ J_n &\triangleq z(nh) - z((n-1)h) = \sum_{i=N((n-1)h)+1}^{N(nh)}j_i, where :math:`N(t)` is a Poisson process with rate :math:`\lambda`, :math:`j_i\sim\mathcal{N}(\mu_j,\sigma_j^2)`. Moments ======== Moments and Central Moments .. math:: E[\overline{y}_{n}^l] &= E[(\overline{y}_{o,n} + \overline{J}_n)^l] = \sum_{i=0}^{l} C_l^i E[\overline{y}_{o,n}^i]E[\overline{J}_n^{l-i}],\\ E[y_n^l] &= E[(y_{o,n} + J_n)^l] = \sum_{i=0}^{l} C_l^i E[y_{o,n}^i] E[J_n^{l-i}]. Functions :py:func:`~ajdmom.mdl_1fsv.mom.moment_y` and :py:func:`~ajdmom.mdl_1fsv.cmom.cmoment_y` can be used to compute :math:`E[y_{o,n}^i]` and :math:`E[\overline{y}_{o,n}^i]`, respectively. Meanwhile, functions :py:func:`~ajdmom.cpp_mom.mcpp` and :py:func:`~ajdmom.cpp_mom.cmcpp` can be used to compute :math:`E[J_n^{l-i}]` and :math:`E[\overline{J}_n^{l-i}]`, respectively. Covariances ============ .. math:: cov(y_n^{l_1}, y_{n+1}^{l_2}) = E[y_n^{l_1}y_{n+1}^{l_2}] - E[y_n^{l_1}]E[y_{n+1}^{l_2}] which reduces to .. math:: &E[y_n^{l_1}y_{n+1}^{l_2}]\\ &= \sum_{i=0}^{l_2}C_{l_2}^i E[y_n^{l_1}y_{o,n+1}^i]E[J_{n+1}^{l_2-i}]\\ &= \sum_{i=0}^{l_2}C_{l_2}^i \sum_{j=0}^{l_1}C_{l_1}^j E[y_{o,n}^jy_{o,n+1}^i] E[J_n^{l_1-j}]E[J_{n+1}^{l_2-i}]. Function :py:func:`~ajdmom.mdl_1fsv.cov.moment_yy` in module :py:mod:`ajdmom.mdl_1fsv.cov` can be used to compute :math:`E[y_{o,n}^jy_{o,n+1}^i]`. In summary, I defined 1. :py:func:`~ajdmom.mdl_1fsvj.mom.moment_y` for moment :math:`E[y_n^l]`. 2. :py:func:`~ajdmom.mdl_1fsvj.cmom.cmoment_y` for central moment :math:`E[\overline{y}_{n}^l]`. 3. :py:func:`~ajdmom.mdl_1fsvj.cov.cov_yy` for covariance :math:`cov(y_n^{l_1}, y_{n+1}^{l_2})`. API ==== .. autosummary:: :toctree: generated ajdmom.mdl_1fsvj.cmom ajdmom.mdl_1fsvj.mom ajdmom.mdl_1fsvj.cov ajdmom.mdl_1fsvj.euler